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Abstract

Background: Identification of canonical pathways through enrichment of differentially expressed genes in a given
pathway is a widely used method for interpreting gene lists generated from high-throughput experimental studies.
However, most algorithms treat pathways as sets of genes, disregarding any inter- and intra-pathway connectivity
information, and do not provide insights beyond identifying lists of pathways.

Results: We developed an algorithm (PathNet) that utilizes the connectivity information in canonical pathway
descriptions to help identify study-relevant pathways and characterize non-obvious dependencies and connections
among pathways using gene expression data. PathNet considers both the differential expression of genes and their
pathway neighbors to strengthen the evidence that a pathway is implicated in the biological conditions
characterizing the experiment. As an adjunct to this analysis, PathNet uses the connectivity of the differentially
expressed genes among all pathways to score pathway contextual associations and statistically identify biological
relations among pathways. In this study, we used PathNet to identify biologically relevant results in two Alzheimer’s
disease microarray datasets, and compared its performance with existing methods. Importantly, PathNet identified
de-regulation of the ubiquitin-mediated proteolysis pathway as an important component in Alzheimer’s disease
progression, despite the absence of this pathway in the standard enrichment analyses.

Conclusions: PathNet is a novel method for identifying enrichment and association between canonical pathways
in the context of gene expression data. It takes into account topological information present in pathways to reveal
biological information. PathNet is available as an R workspace image from http://www.bhsai.org/downloads/
pathnet/.
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Background
High-throughput technologies enable the study of bio-
logical processes at the systems level. However, analyzing
the large amount of data generated by high-throughput
techniques and translating these data into biological
knowledge is currently a critical bottleneck in systems
biology. To study a disease at the system level, DNA
microarrays are routinely used to provide a comparison
of gene expression patterns in control vs. disease condi-
tions. Because this comparison usually reveals a large
number of differentially expressed genes, it is difficult, if
not impossible, to analyze the effect of each gene indi-
vidually. In addition, high-throughput data often contain

considerable noise, making individual or isolated gene
observations less likely to be relevant. Using statistical
methods to summarize the data can help reduce noise
and increase the reproducibility of the results [1].
However, translating these results into biological know-
ledge remains challenging.
The most commonly used methods for summarizing

gene expression data rely on enrichment analysis of dif-
ferentially expressed genes to identify and rank Gene
Ontology (GO) terms and canonical pathways in order
to characterize the underlying biological nature of the
data. Comprehensive reviews of these approaches are
available [2-4]. While the hierarchically ordered GO
terms describe the properties of gene products, canon-
ical pathways describe the connectivity between genes
and gene products involved in a given biological pro-
cess. The simplest and most widely used method for
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identifying pathways based on gene expression data is
the hypergeometric test [5], which assesses whether the
number of differentially expressed genes in a pathway is
significantly higher than what would be expected by
chance. A popular alternative to the hypergeometric test
for assessing the relevance of pathways is the gene set
enrichment analysis (GSEA) [6]. This method considers
the relative positions of pre-defined gene sets (pathways)
in a rank-ordered list of differentially expressed genes, in
order to determine if a pathway is relevant to the experi-
mental study.
Well-studied canonical pathways provide extensive in-

formation about how the genes and gene products inter-
act and regulate each other. However, most of the
pathway analysis methods, including the hypergeometric
test and GSEA, treat pathways as lists of genes and do
not take into account the connectivity information em-
bedded within the pathway. More recently, some studies
[7-9] have included such topological information for
calculating enrichment of signaling pathways, by assign-
ing different weights to genes based on their location in
the pathway. Nevertheless, these methods still consider
each pathway as an isolated entity, where, in reality,
pathways are not isolated; they may share genes. In fact,
out of 130 non-metabolic pathways from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
[10], 88 pathways have 20% or fewer genes unique to
that pathway, while only 6 pathways have 80% or more
unique genes. In fact, all pathways shared at least one
gene with another pathway. Thus, to fully take into ac-
count the biological information collected and encoded
in a database such as KEGG, all pathways should be
pooled together to allow for exploitation of inter-
pathway connectivity information. However, none of the
current methods for pathway analysis incorporates intra-
and inter-pathway connectivity information for enrich-
ment analysis.
In this study, we have attempted to address these

issues by developing an algorithm for examining path-
way enrichment that uses differential gene expression
(or other molecular profiling data) to analyze Pathways
based on Network information (PathNet). To incorpor-
ate inter-pathway connectivity, we combined KEGG
pathways (from www.kegg.com) to create a pooled path-
way. For enrichment analysis, PathNet first identifies the
association of each gene with a disease (referred to as
direct evidence) by comparing gene expression data in
control patients vs. patients with the disease. Then,
PathNet identifies the association of each gene’s neigh-
bors with the disease (referred to as indirect evidence)
based on the inter- and intra-pathway connectivity infor-
mation present in the pooled pathway. Finally, PathNet
combines the direct and indirect evidences to obtain the
significance of the combined evidence. Based on the

statistical significance of the combined evidence for all
genes, PathNet uses the hypergeometric test to uncover
the pathways associated with the disease.
As genes in pathways function in a coordinated fash-

ion, association studies between pathways in the context
of gene expression data can unravel the underlying com-
plexity of biological processes. Li et al. [11] proposed
that pathways are more likely to interact when the num-
ber of protein-protein interactions (PPI) between pro-
teins from two pathways are greater than what would be
expected by chance. Based on this assumption, they cre-
ate a network of pathways and identify the activated
pathway modules in a given study by mapping the gene
expression data enriched pathways onto the network.
Recently, Kelder et al. [12] identified indirect associa-
tions between pathways by integrating pathway informa-
tion, PPI networks, and gene expression data. Liu et al.
[13] estimated crosstalk by mapping gene expression on
PPIs between proteins from the Alzheimer’s disease
(AD) pathway and other pathways sharing genes with
the AD pathway. As PPI networks are usually noisy,
identifying indirect associations using PPI network
might produce false positive associations. In contrast
with other approaches, PathNet assesses the association
in the context of gene expression data based on intra-
and inter-pathway connectivity in the pooled pathway.
This association of specific pathways, beyond the mere
overlap of genes annotated as belonging to more than
one pathway, can reveal otherwise hidden pathway de-
pendencies (and hence biological insights) that are not
directly attainable from enrichment analysis alone.
To illustrate the utility of PathNet, we applied it to

two AD microarray datasets and analyzed the results in
the context of existing knowledge. In addition, we show
how the statistical scores of the associations between
pathways through gene expression data facilitated the
identification of a biological association between the AD
pathway and ubiquitin-meditated proteolysis pathway.

Methods
Pathway network from KEGG pathways
Pathways from the KEGG database [10] available in
November 2010 were downloaded as KEGG Markup
Language files. Each of the 130 non-metabolic pathways
present in the KEGG database were represented as
directed graphs, where the nodes and edges of a graph
were, respectively, characterized by unique gene IDs and
interactions in the pathway. KEGG interactions repre-
senting processes, such as phosphorylation, dephos-
phorylation, activation, inhibition, and repression, were
accounted for by directed edges, whereas bidirectional
edges were used to represent binding/association events.
The complete mapping between edge directionality and
KEGG protein interaction attributes is provided in
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Additional file 1. All 130 pathways were combined to
create a pooled pathway, and the R package, named ‘An
interface to the BOOST graph library,' from Bioconductor
(http://www.bioconductor.org/packages/rel-ease/bioc/html/
RBGL.html) was used to convert this information into the
adjacency matrix (A). The adjacency matrix is a non-
symmetric square matrix, where the number of rows
(and columns) represents the number of genes present in
the pooled pathway. The diagonal elements of matrix A
were set to zero to exclude self-interactions. The non-
diagonal element Aij represents the directed KEGG protein
interaction between nodes i and j:

Aij ¼ 1 if there is an interaction from node i to node j
0 otherwise

�

ð1Þ

In the case of a bidirectional interaction, two edges are
introduced, one from node i to node j and another from
node j to node i. Although the bulk of the genes
annotated in KEGG pathways are present on most
microarray chips, about 10% of the genes are typically

missing. In order to only include information derived
from experimental data, we re-constructed the adjacency
matrix for each chip-set by deleting rows and columns of
genes that were not examined experimentally. In order to
be consistent in the analysis presented below, we also
redefined the pooled pathway for each chip-set to include
only genes for which experimental data exists. PathNet
automatically carries out this step from the input files.

Pathway enrichment analysis
PathNet combines two types of evidence for pathway
enrichment analysis, referred to as direct evidence and
indirect evidence (Figure 1). Direct evidence accounts
for the differential expression of gene i between two
experimental conditions (control and disease), while
indirect evidence considers the differential expression
of the neighbors of gene i in the pooled pathway. The
nominal p-values associated with the direct and indirect
evidences of each gene were combined to obtain the
p-value of the combined evidence, which is subsequently
used for the pathway enrichment analysis.

Figure 1 Schematic representation of PathNet analysis. The direct evidence pertaining to differential gene expression is detected via
microarray analysis while the indirect evidence of a gene is calculated from the direct evidences of its neighbors in the pathway. The direct and
indirect evidences are combined, and the combined evidence is used to identify pathway enrichments via a hypergeometric test. The combined
input of microarray data and pathway information yields a final pathway enrichment list that can be associated with the different test conditions
in the samples.
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We used the t-test to calculate a nominal p-value for
the direct evidence (pi

D) in order to gauge whether the
average expression of gene i was different between the
two experimental conditions. The lower the pD-value,
the more likely it is that the observed difference in gene
expression is significant. Alternative methods, such as
SAM [14] or ANOVA [15], can also be used to estimate
pD.
To ascertain the significance of the indirect evidence,

we need to test whether the expression of each neighbor
of gene i is or is not different between the two experi-
mental conditions. To characterize this difference, we
first calculated the indirect evidence score (SIi), which
incorporates the topological information of the path-
ways. This score captures a weighted level of differential
expression of the neighbors of gene i, and is calculated
using the following equation:

SIi ¼
X
j∈G;i≠j

Aij � �log10 pDj
� �� �

ð2Þ

where G denotes the set of all genes present in the
pooled pathway, Aij is defined as in Eq. (1), and pj

D

denotes the nominal p-value of the direct evidence for
gene j which is used to assign the weight of the contri-
bution. The nominal p-value associated with the indirect
evidence (pi

I) was inferred by testing if the observed
score SIi was greater than the corresponding random
values created by shuffling the pj

D-values in the pooled
pathway. In each of the N shuffles, all pj

D-values were
scrambled by randomly re-assigning their indices. As the
connectivity in the pooled pathway remained fixed, for
each gene i in the nth shuffle, we calculated the corre-
sponding random score SIi

R(n). Next, for each gene i, we
formally re-constructed the probability density distribu-
tion function for the random scores pi

R. Practically, we
estimated the pi

I-values by counting the number of ran-
dom scores larger than the actual scores, as follows:

pIi≡
Z1

SIi

PR
i xð Þdx≈ 1

N

XN
n¼1

1 if SIRi nð Þ > SIi
0 otherwise

�
ð3Þ

In our calculations, we used N = 2,000 shuffles. As the
estimated pi

I-values are integer multiples of 1/N, we
cannot accurately estimate pi

I-values if they are less than
1/N. To address this issue, we assigned 1/N as the mini-
mum pi

I-value. The lower the pi
I-value, the more likely it

is that the observed weighted gene expression pattern
around gene i is not a random pattern.
We obtained the p-value of the combined evidence

(pi
C) for each gene i by using Fisher’s method [16] to ag-

gregate the nominal p-values associated with the direct

and indirect evidences (pi
D and pi

I). Previous studies
[17,18] have shown that this method is optimal for com-
bining independent p-values, when compared to other
methods. In our case, the indirect evidence associated
with a gene is dependent only on the magnitude of the
differential gene expression of its neighbors, and not on
its own expression levels, which formally ensures inde-
pendence between the p-values. Additional file 2 shows
pD- versus pI-values for the datasets we used and there
was no obvious dependency of these values on each
other. We also verified that the set of pD- and pI-
values were linearly independent for all comparisons by
calculating a non-significant correlation coefficient in
each test set. Accordingly, for gene i, the two probabilities
were combined based on Fisher’s method, using the
following equation:

pCi ¼
Z1

�2ln pDi �pIið Þ
P χ24
� � ð4Þ

where P(χ4
2) denotes the probability density function

of the χ2 distribution with 4 degrees of freedom. Note
that, even if the pD- and pI-values were correlated,
they could still be combined using a modified version
of Fisher’s method [19].
For genes that are isolated and not connected in

any pathway, there are no pI-values to consider, hence
pC = pD. Finally, we selected genes with pi

C < 0.05 as
differentially expressed and used the hypergeometric test
to calculate pathway enrichment. For all hypergeometric
tests, we used the ‘phyper’ function of the R programming
language.

Contextual association between pathways
As discussed above, KEGG pathways are not isolated;
some genes are shared between pathways. Thus, differ-
ential gene expression in one pathway may be directly
linked to differential gene expression in another path-
way. Whereas the existing pathway annotations provide
a static association among genes and pathways, gene
expression data for particular conditions provide
context-dependent information. Here, we considered all
connections in the pooled pathway to identify possible
contextual pathway-pathway associations based on a
weighted measure of differential gene expression among
shared pathway genes. Figure 2 outlines three ways in
which differential gene expression data can link two
pathways that either directly share genes or are linked
via gene connections annotated in other pathways.
We calculated the contextual score SCαβ to quantify

the biological association via differentially expressed
genes from the pooled pathway, between two pathways
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α and β. The SCαβ from pathway α to pathway β is cal-
culated using the following equation:

SCαβ ¼
X
i∈gα

X
j∈gβ

Aij � �log10 pDi
� �� �

� �log10 pDj
� �� �

ð5Þ

where gα and gβ denote the set of genes in pathway α
and β, respectively, Aij is defined as in Eq. (1), and pi/j

D

denotes the nominal p-value of the direct evidence for
gene i/j used to construct the weight for each Aij value.
Note that as Aii ≡ 0, the SCαβ does not contain self inter-
actions and only includes gene pairs that have been con-
nected to each other via the pooled pathway. The
formulation uses only the pD-values associated with the
direct evidence and not the pC-values, which already
contain pathway information via the indirect evidence as
calculated in Eq. (2). A higher SCαβ indicates a stronger
contextual association between the pathways.
To evaluate the probability of finding a SCαβ greater

than expected by chance alone, we followed the same
procedure used to estimate the p-values for the indirect
evidence. The p-value associated with the SCαβ (pαβ) was
inferred by testing if the observed score SCαβ were
greater than the corresponding random values created
by shuffling all the pD-values in the pooled pathway N
times. With the connectivity in the pooled pathway
fixed, for each pathway pair α and β in the nth shuffle,
we calculated the corresponding random score SCαβ

R (n).
We then formally re-constructed, for each pathway pair
α and β, the probability density distribution function for
the random scores Pαβ

R . Finally, we estimated the pαβ-values
by counting the number of random scores larger than the
actual scores for each pathway pair:

pαβ≡
Z1

SCαβ

PR
αβ xð Þdx≈ 1

N

XN
n¼1

1 if SCR
αβ nð Þ > SCαβ

0 otherwise

�
ð6Þ

We used N = 2,000 shuffles to estimate the pαβ-values.
The lower the pαβ-value, the more likely it is that the
observed weighted gene expression pattern connecting
pathways α and β are not a random pattern.
We also tested the extent to which the genes from

pathways α and β overlap, based on common genes be-
tween the pathways. This information is only based on
the KEGG database and is not dependent on gene ex-
pression data, i.e., we used the full complement of
KEGG genes to estimate this overlap. The hypergeo-
metric test was used to estimate if the observed overlap
was statistically significant.

Figure 2 Schematic representation of three scenarios of
contextual association between pathways. Each illustration (A-C)
shows two pathways (sets of both connected and isolated genes
inside ellipsoids) with varying degrees of overlapping genes. The
size of the circles (genes) represents the level of differential gene
expression between control and disease patients (the higher the
significance associated with the expression change, the larger the
circle). The lines and arrows represent KEGG-derived interactions
between genes as annotated in the pooled pathway, and the thick
lines represent edges connecting genes from Pathway 1 to Pathway
2. (A) Overlapping pathways with high contextual association.
Whereas Pathway 1 and Pathway 2 can be associated because
genes A and B are shared between the two pathways, the fact that
overlapping genes are directly connected to other differentially
expressed genes (thick connections to large circles) enhances this
association. (B) Overlapping pathways with low contextual
association. The pathway maps are exactly the same as in case (A).
However, Pathway 1 is “less” associated with Pathway 2 in the
context of gene expression data, as the genes connected by thick
edges are modestly differentially expressed (thick connections to
small circles). (C) Non-overlapping pathways with high contextual
association. Although, Pathway 1 and Pathway 2 do not share any
genes, genes from these two pathways are connected based on
inter-pathway connectivity inferred from the pooled pathway.
Pathway 1 is contextually associated with Pathway 2 because the
genes connecting these two pathways are differentially expressed.
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Microarray datasets
We evaluated the performance of the PathNet algorithm
using two microarray datasets generated by two different
research groups. Both datasets were downloaded from the
National Center for Biotechnology Information’s Gene Ex-
pression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/) and involved AD-related studies. The first
dataset (GEO ID: GDS810) [20], which we refer to as the
disease progression dataset, investigated the expression
profile of genes from the hippocampal region of the brain
as a function of the progression of the disease (incipient,
moderate, and severe). We refer to the second dataset [21]
as the brain regions dataset. This dataset examined the
effect of AD in six different brain regions: the entorhinal
cortex, hippocampal field CA1, middle temporal gyrus,
posterior cingulate cortex, superior frontal gyrus, and pri-
mary visual cortex (GEO ID: GSE5281). Because different
regions of the brain are involved in controlling different
biological processes, this dataset can provide insights into
the tissue-specific activation of pathways. The entorhinal
cortex region samples were obtained from patients in the
early stages of AD, while the remaining samples were
obtained from patients in the later stages of the disease.
In the disease progression dataset, the expression of each

gene in patients with incipient, moderate, and severe dis-
ease was compared with control patients using the t-test. In
the brain regions dataset, gene expression was compared
between diseased and control patients for each brain region.
We applied the proposed pathway enrichment method for
each of these nine comparisons (three from the disease pro-
gression dataset and six from the brain regions dataset).

Results and discussions
Comparison of PathNet with existing algorithms in
identifying pathways biologically relevant to AD
We used PathNet to identify the enrichment of pathways
in each of the nine comparisons described above. We also
compared the results of PathNet with three existing algo-
rithms for pathway analysis that are currently in wide use:
the hypergeometric test [5]; gene set enrichment analysis
(GSEA) [6]; and signaling pathway impact analysis (SPIA)
[8]. The GSEA and SPIA packages were downloaded from
the Broad Institute (http://www.broadinstitute.org/gsea/
index.jsp) and Bioconductor (http://www.bioconductor.
org) Web sites, respectively. For GSEA, we used the pro-
vided Java-version of the program with a pre-ranked gene
list. To ensure the comparability of results, we used the
same version of the KEGG pathways (downloaded in
November 2010) for all comparisons. Finally, to account
for multiple comparisons, we corrected the pathway
enrichment p-values for family-wise error rate (corrected
p-values are represented as pFWER) and used a significance
threshold of 0.05 for all comparisons. The results of all
nine comparisons using each of the four pathway analysis

methods are provided in Additional file 3, Additional file 4,
and Additional file 5. Here, we summarize the results and
the biological relevance of our findings.
Our primary aim was to determine if these methods

could identify whether the AD pathway (KEGG ID:
5010) is significantly enriched in AD patients vs. control
patients. Figure 3 shows the degree of enrichment of the
AD pathway for each of the comparisons, as measured
by pFWER. Figure 3A shows that using the disease
progression dataset, none of the methods could identify
significant enrichment in the AD pathway during the
early (incipient) stages of the disease. As the disease pro-
gresses, the significance of the enrichment increased in
all four methods. During the late (severe) stages of the
disease, three of the four methods could identify signifi-
cant enrichment in the AD pathway. Notably, at moder-
ate stages of the disease, only PathNet was able to
determine that the AD pathway was significantly
enriched in AD patients.

Figure 3 Enrichment results for the AD pathway. Enrichment
results (pFWER: family-wise error rate corrected p-values) for the AD
pathway using four different methods in the (A) disease progression
dataset and (B) brain regions dataset (VCX: primary visual cortex, EC:
entorhinal cortex, HIP: hippocampal field CA1, MTG: middle temporal
gyrus, PC: posterior cingulate cortex, and SFG: superior frontal gyrus).
Only PathNet could identify the AD pathway as significant in the
moderate stage of the disease (A), and the VCX region (B).
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In the brain regions dataset, all of the methods could
identify significant enrichment of the AD pathway in the
middle temporal gyrus region and posterior cingulate
cortex regions, however, none identified AD enrichment
in the entorhinal cortex or superior frontal gyrus regions
(Figure 3B). One plausible reason is that the entorhinal
cortex samples were from patients with incipient disease.
Interestingly, only PathNet could identify significant en-
richment of the AD pathway in the primary visual cor-
tex. There is strong evidence in the literature that the
primary visual cortex region is indeed affected by AD
[22,23]; hence, this is likely not a false positive finding.
In each of the comparisons, PathNet consistently yielded
the lowest p-value (pFWER) for the AD pathway.
To test the sensitivity of PathNet with respect to the

other three pathway analysis methods, we compared the
enrichment levels of seven pathways that have been fre-
quently associated with AD in the literature. Table 1
shows the results from the three stages of the disease
using the disease progression dataset, with samples taken
from the hippocampus region of the brain, and the
results in the brain regions dataset, with samples from
the hippocampal field CA1. PathNet correctly identified
most of these pathways as significantly enriched while
the other three methods failed to do so. The complete
set of results is provided in Additional file 3, which cor-
roborates the favorable performance of PathNet.
To test the specificity of PathNet, we investigated the

biological relevance of pathways co-enriched with the
AD pathway. Table 2 shows that in six out of the nine
comparisons where the AD pathway was enriched, we
analyzed pathways co-enriched with the AD pathway.
Eight pathways were co-enriched with the AD pathway
in five or more of the six cases. Of these eight pathways,
six were related either to AD (regulation of actin cyto-
skeleton; adherens junction; focal adhesion; and long-

term potentiation) or to other neurological diseases
(Parkinson’s disease and Huntington’s disease). Both the
Parkinson’s disease pathway and the Huntington’s
disease pathway show significant overlap with the AD
pathway, which explains why they were frequently co-
enriched. There is evidence in the literature to support
the association of each of these co-enriched pathways
with AD. This qualitatively implies that most of the sig-
nificantly enriched pathways identified by PathNet are
unlikely to be biological false positives.
The samples from the disease progression dataset were

collected from the hippocampal field CA1 region. Simi-
larly, the brain regions dataset provides results of sam-
ples for patients with severe disease with samples also
collected from the hippocampal field CA1 region. There-
fore, the data from these two samples, collected in the
hippocampus for severe AD patients, should be compar-
able and the overlap of their significantly enriched path-
ways can be considered as a measure of the quality of
the pathway analysis methods. Figure 4 shows the num-
ber of significantly enriched pathways from each dataset
and their overlaps. We used the hypergeometric test to
compute the significance of the overlap, where the
results suggest that PathNet yielded the highest level of
significance in overlap when compared to the other
methods.
In summary, we compared the results obtained when

using PathNet for pathway analysis vs. the results
obtained with three existing widely used methods. We
found that PathNet was able to: 1) identify the AD path-
way as significant in cases where the existing methods
failed; 2) detect significantly enriched pathways that are
known to be biologically relevant to AD; and 3) detect a
higher level of significance in overlap of the enriched
pathways in two independent datasets that are expected
to be comparable.

Table 1 Enrichment of pathways associated with AD

Pathway (KEGG ID) PathNet SPIA GSEA Hypergeometric test

Inc Mod Sev HIP Inc Mod Sev HIP Inc Mod Sev HIP Inc Mod Sev HIP

AD pathway (5010) 1.00 *0.01 *0.00 *0.00 1.00 0.14 *0.00 *0.01 1.00 0.81 0.72 0.34 1.00 0.06 *0.00 *0.00

Focal adhesion (4510) 1.00 *0.00 *0.00 *0.00 1.00 1.00 1.00 0.28 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Long-term pote. . . (4720) 1.00 *0.00 *0.01 *0.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.37 1.00 1.00 1.00 1.00

Regulation of a. . . (4810) *0.00 *0.00 *0.00 *0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Phosphatidylino. . . (4070) 1.00 0.11 *0.00 0.52 1.00 1.00 0.54 1.00 1.00 1.00 0.21 1.00

Wnt signaling (4310) *0.00 1.00 *0.00 *0.03 1.00 1.00 0.92 1.00 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00

Adherens junct. . . (4520) 1.00 *0.00 0.13 *0.00 0.95 0.31 0.96 0.38 1.00 1.00 0.48 *0.01

Ubiquitin media. . . (4120) 1.00 1.00 1.00 0.13 1.00 1.00 1.00 0.92 1.00 1.00 1.00 0.17

Enrichment (pFWER: family-wise error rate corrected p-values) of pathways associated with Alzheimer’s disease (AD) using four different pathway analysis methods
(i.e., PathNet: the present study, SPIA: signaling pathway impact analysis, GSEA: gene set enrichment analysis, and the hypergeometric test), from the disease
progression dataset (Inc: incipient, Mod: moderate, and Sev: severe) and from the brain regions dataset (HIP: hippocampal field CA1 region). The complete set of
data is included in Additional files 3, Additional files 4, and Additional files 5. The statistically significant pFWER-values (pFWER < 0.05) for each pathway and method
are indicated by an asterisk (*). PathNet was able to identify these pathways as significant more often than each of the other three methods. SPIA was not
applicable (represented by missing enrichment scores) when certain topological characteristics of the pathway was not met.
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Estimation of false positive rates
We verified that PathNet’s identification of pathways
was driven by the differential gene expression data - and
not only from the inherent connectivity of the pathways
themselves - by testing the performance of PathNet on
randomized input data. In the severe stage of the disease
progression data, we randomly shuffled the gene names
1,000 times and estimated the pFWER values for 130
pathways from PathNet. The randomization of gene
names ensures that the direct evidences and number of
differentially expressed genes in the shuffled data is the
same as in the original data. The distribution of pFWER

values given in Additional file 6 show that false positive
rates from PathNet were low because 95% of the pFWER

values were equal to 1. The false positive rate of PathNet
at a pFWER cutoff of 0.05 (used in our analysis) was 0.02.
We further investigated if the difference in pathway top-
ology contributes to variations of false positive rates
among pathways. We calculated false positive rates for
each pathway from 1,000 random shuffles and plotted
the distribution of false positive rates for 130 pathways
(Additional file 7). The maximum false positive rate was
0.07, implying that none of the pathways have a signifi-
cantly high probability of being identified as a false posi-
tive. Hence, we cannot consider PathNet’s results to be
an artifact of the pathway definitions themselves.

Contextual association between pathways
In this study, we introduced the concept of a contextual
association between pathways, i.e., pathway connections
that are influenced by differential gene expression of
neighboring genes rather than just the static overlap of
genes in pathways (Figure 2). Unlike the case of static
overlap, these associations are specific to, and dependent
on, the biological conditions of the particular study.
These calculations identify pathway pairs where the dif-
ferentially expressed genes linked to each other in the
two pathways are present at a greater frequency than
would be expected by chance alone.
We used PathNet to identify pathway associations in

each of the two AD datasets described above. Because
we are interested in analyzing datasets related to AD, we
specifically analyzed pathways that have statistically sig-
nificant contextual association with the AD pathway.
We focused on six comparisons (moderate and severe
samples in the disease progression dataset; and primary
visual cortex, hippocampal field CA1, middle temporal
gyrus, and posterior cingulate cortex regions in the brain
regions dataset), where PathNet identified the AD path-
way as statistically enriched. The results from all com-
parisons are provided in Additional file 8. Among the
AD contextually associated pathways, Table 3 lists the
most frequently appearing pathways in these six compar-
isons (selected as occurring at least three times). We

Figure 4 Overlap of pathways. Number of enriched pathways that
overlap between two comparable datasets (hippocampal field CA1
region for patients with severe AD), using four different methods
(i.e., PathNet: the present study, SPIA: signaling pathway impact
analysis, GSEA: gene set enrichment analysis, and the
hypergeometric test). As an example, PathNet identified 22 and 17
statistically significant pathways from the brain regions dataset and
the disease progression dataset, respectively. Ten of these pathways
overlapped. The statistical significances of the overlaps from each of
the four methods were tested using the hypergeometric test; p-
values were as follows: pPathNet = 2.0 × 10-5, pSPIA = 1.5 × 10-4,
pGSEA = 1.0, phypergeometric = 3.3 × 10-4.

Table 2 Pathways co-enriched with the AD pathway

Frequency Pathway name (KEGG ID) References

6 *Bacterial invasion. . . (5100) [24]

6 *Regulation of actin. . . (4810) [25]

5 *Adherens junction (4520) [26]

5 *Focal adhesion (4510) [27-29]

5 *Huntington's disease (5016) [30]

5 *Long-term potenti. . . (4720) [31,32]

5 *Parkinson's disease (5012) [30,33]

5 *Pathogenic Escher. . . (5130) NA

4 Endocytosis (4144) [34]

4 Melanoma (5218) [35-37]

4 Pathways in cancer (5200) [35-37]

4 Shigellosis (5131) NA

3 ECM-receptor (4512) [38]

3 Endometrial cancer (5213) [35-37]

3 ErbB signaling (4012) [39]

3 Fc gamma R- (4666) [31]

3 Glioma (5214) [40]

3 MAPK signaling (4010) [41]

3 Phosphatidylinosit. . . (4070) [42,43]

3 Progesterone-med. . . (4914) NA

3 Proteasome (3050) [44,45]

List of pathways co-enriched with the Alzheimer’s disease (AD) pathway in the
six out of nine comparisons (moderate and severe samples in the disease
progression dataset; and primary visual cortex, hippocampal field CA1, middle
temporal gyrus, and posterior cingulate cortex regions in the brain regions
dataset) where the AD pathway is enriched. The ‘Frequency’ column shows the
number of times the pathway was co-enriched. Pathways that are frequently
co-enriched (frequency ≥ 5) are indicated by an asterisk (*). The ‘References’
column provides support for the association of each of these co-enriched
pathways with AD. NA: not available.
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identified six pathways from this list that are related
to neurological disorders in general and AD in par-
ticular: gonadotropin releasing hormone (GnRH) sig-
naling; neurotrophin signaling; long-term potentiation;
Huntington’s disease; long-term depression; axon guidance;
and ubiquitin-mediated proteolysis. GnRH regulates the
release of luteinizing hormone, which is elevated in AD
patients. The luteinizing hormone is known to be involved
in the formation of beta amyloid (Aβ), which is a patho-
logical hallmark of AD [46,47], and the neurotrophin
signaling pathway regulates the signaling of neurons [48].
In AD and other neurodegenerative conditions, neurotro-
phin receptors (NTRs), such as p7NTR, bind to Aβ and
nerve growth factors to promote cell death [49]. However,
only two of these six pathways (long-term potentiation
and Huntington’s disease) were identified as co-enriched
(in at least three out of six cases) in the pathway enrich-
ment analysis (Table 2).
If two pathways have significant overlap, i.e., they

share a large number of genes, there is an increased
chance that they will be associated with each other.
However, contextual association is dependent not only
on the extent of overlap, but also on the differential ex-
pression levels of genes that connect the two pathways.
To investigate if the contextual association provided in-
formation beyond what could be expected by simply
analyzing the shared genes between the corresponding
pathway and the AD pathway, we calculated the p-value

of the direct overlap of genes in each pathway with the
AD pathway, using the hypergeometric test (Table 3). A
low p-value indicates that the pathway has a significantly
high overlap with the AD pathway, and that the path-
ways are strongly associated with each other based on
previous knowledge encoded in the pathway definitions
themselves. Interestingly, in 31% of the cases we
observed that pathways with limited overlap had signifi-
cant contextual association with each other. For ex-
ample, ubiquitin-mediated proteolysis is one of the
pathways that do not share any genes with the AD path-
way, and yet we found that, in four out of six compari-
sons, this pathway was contextually associated with the
AD pathway (Table 3, Column 4). We therefore investi-
gated the relationship between the AD and ubiquitin-
mediated proteolysis pathways further. Figure 5 shows
that there are 112 edges connecting genes between these
two pathways, which imply a possible association be-
tween them. However, because these edges connect
genes from two non-overlapping pathways, we could not
have identified this relationship if we had treated the
pathways separately, or if we had used methods that re-
late pathways based solely on overlapping genes. It is
well established that deregulation of ubiquitin-mediated
proteolysis can lead to the formation of neurofibrillary
tangles (NFTs) from hyper-phosphorylated tau protein
[31,56,57]. NFTs are one of the pathological hallmarks of
AD, and the number of NFTs increases with the progres-
sion of the disease [31]. However, this biologically rele-
vant pathway is not statistically enriched from any of the
four pathway analysis methods used here (Table 1), sug-
gesting that our contextual association between path-
ways can distil biological information that could not be
obtained from enrichment analysis alone.
In summary, the following observations were made:

1) enrichment analysis using PathNet performed better
than the three existing pathway analysis methods in
identifying biologically relevant pathways, 2) contextual
pathway-pathway analysis can reveal biological insights
that may not be obtained from enrichment analysis
alone, and 3) the enrichment of pathways associated
with AD changes with disease progression.

Conclusion
In this study, we developed PathNet, a method for path-
way analysis based on high-throughput molecular profil-
ing data, using inter- and intra-pathway connectivity
information. PathNet calculates both pathway enrich-
ment and contextual associations between pathways. We
have shown that PathNet was able to identify the AD
pathway and other biologically relevant pathways in
multiple scenarios while three other widely used path-
way analysis methods (hypergeometric test, GSEA, and
SPIA) often failed to do so. PathNet also identified

Table 3 Contextual association of pathways

Frequency Pathway name (KEGG
ID)

Overlap References

(p-value)

5 Gap junction (4540) 0.00 [50,51]

5 GnRH signaling. . . (4912) 0.00 [46,47,52]

5 Huntington’s. . . (5016) 0.00 [30]

4 Adherens junction (4520) 0.78 [26]

4 Axon guidance (4360) 0.01 [31,53]

4 Dorso-ventral (4320) 0.24 NA

4 Insulin signaling (4910) 0.03 [31]

4 Long-term depression (4730) 0.00 [54,55]

4 Long-term potentiation (4720) 0.00 [31,32]

4 Neurotrophin signal. . . (4722) 0.01 [31,48]

4 Oocyte meiosis (4114) 0.00 NA

4 Pathways in cancer (5200) 0.71 [35-37]

4 Ubiquitin media. . . (4120) 1.00 [56,57]

Pathways that were contextually associated [p < 0.05 calculated from Eq. (6)]
with the AD pathway from six comparisons (moderate and severe samples in
the disease progression dataset; and primary visual cortex, hippocampal field
CA1, middle temporal gyrus, and posterior cingulate cortex regions in the
brain regions dataset). For comparison purpose, the fourth column shows the
p-value of overlapping genes of a pathway and the AD pathway based on
hypergeometric test. The ‘References’ column in the table provides support for
the association each of the pathways to AD. NA: not available.
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pathways contextually associated with the AD pathway.
Literature studies support the biological relevance of the
results identified using PathNet.
The existing methods used for pathway enrichment

consider each pathway as a separate entity. In contrast,
PathNet considers both inter-pathway and intra-pathway
connectivity for pathway enrichment. This connectivity
information, in the form of a significance-level weighted
gene-gene connection, corroborates and strengthens the
direct evidence of differential gene expression readily
derived from microarray data when a gene’s neighbors
on the pathway are also differentially expressed. The
method properly accounts for highly connected genes
that are part of multiple pathways via comparison with
the appropriate probability density function generated
from topology-preserving randomized data. The un-
biased nature of this method was confirmed by the
estimated low false positive rates. However, if no con-
nectivity information is available for a gene, PathNet still
includes the microarray-derived evidence for identifying
pathway enrichment. This ensures that we do not
penalize genes that have no information available regard-
ing their connectivity.
In PathNet, indirect evidence of a gene is calculated

based on gene expression levels of its neighbors using
Eqs. (1–3). Hence, indirect evidence of the gene cannot
be estimated if neighboring gene expression is not mea-
sured in the microarray analysis. In such cases, the com-
bined evidence of a gene is replaced with the direct
evidence. In the limiting case where none of the genes’
neighbors expression levels are measured, PathNet con-
verges to a standard hypergeometric test.

Currently, there is no gold standard for quantitatively
testing and comparing the performance of pathway en-
richment methods. As an alternative, we have selected a
well-studied disease (i.e., AD), where considerable
amount of knowledge already exists about the deregula-
tion of its biological processes and multiple high-quality
microarray datasets are available, to examine important
aspects of the disease. This allowed us to assess the per-
formance of PathNet based on an in-depth analysis of
the biological relevance of the results, directly compare
its performance with other existing pathway enrichment
methods, and ascertain each method’s ability to retrieve
the relevant biological information.

Availability and requirements
Software name: PathNet
Download site: http://www.bhsai.org/downloads/pathnet/
Operating system: Platform independent
License: GPL version 3
Programming language: R version 2.14.1 or later

Additional files

Additional file 1: KEGG directionality assignments. This file gives the
types of edge directionality used in the KEGG pathway.

Additional file 2: Scatter-plots of direct and indirect evidences. A
figure showing the relationship between direct and indirect evidences for
the nine different comparisons used in this work.

Additional file 3: Hypergeometric test and PathNet results. An Excel
spreadsheet of the results of all nine comparisons using the
hypergeometric test and PathNet.

Additional file 4: GSEA results. An Excel spreadsheet of the results of
all nine comparisons using GEAS.

Figure 5 Connection between Alzheimer’s disease and ubiquitin-mediated proteolysis. Differential gene expression levels from the
posterior cingulate cortex region were overlaid on the Alzheimer’s disease (yellow) and ubiquitin-mediated proteolysis (blue) pathways. The
region of the pathways that are directly and indirectly connected to each other is framed and also shown enlarged in the figure. The size of a
node (representing a gene) represents the extent of differential gene expression between patients with the disease vs. controls. Although there
are no common genes between these two pathways, 112 edges were observed that connected nodes (genes) between the two pathways
(highlighted in red) based on inter-pathway connectivity derived from the pooled pathway. Several of these edges connect differentially
expressed genes in these pathways, analogous to scenario (C) in Figure 2.
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Additional file 5: SPIA results. An Excel spreadsheet of the results of
all nine comparisons using SPIA.

Additional file 6: Randomized distributions of pFWER. Distribution of
pFWER from PathNet derived from the null distribution scenario and
obtained from data randomization.

Additional file 7: Estimated false positive rate. Distribution of
estimated false positive rates based on an analysis of all pathways.

Additional file 8: Contextual AD pathway association. An Excel
spreadsheet of the pathways identified to have a statistically significant
contextual association with the AD pathway.
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